Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Endod J ; 54(9): 1623-1637, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33829516

RESUMO

AIM: To compare six reciprocating instruments regarding their geometric design, metallurgical characteristics, mechanical behaviour and ability to prepare root canals. METHODOLOGY: A total of 246 new 25-mm NiTi instruments (41 per group) from six reciprocating systems (Reciproc, Reciproc Blue, One Files, One Files Blue, Reverso Silver, and WaveOne Gold) were evaluated throughout a multimethod approach regarding their design using stereomicroscopy (number of blades and helix angle) and scanning electron microscopy (blades symmetry, cross section and surface finishing), nickel-titanium composition, phase transformation temperatures, mechanical performance (cyclic fatigue, torsional and bending resistance) and unprepared canal surface area on anatomically matched mandibular molars assessed by micro-CT. One-way ANOVA and post hoc Tukey's or Mood's median tests were selected depending on sample distribution with significance level set at 5%. RESULTS: The instruments had similarities regarding their metal composition and unprepared canal area, whilst differences in phase transformation temperatures and geometric design (number of blades, surface finishing and tip geometry) were observed. Overall, no difference was observed regarding the maximum torque values (P > 0.05), whilst One Files (72 s) and One Files Blue (414 s) had the shortest and longest times to fracture, respectively (P < 0.05). Similar angles of rotation were observed in Reciproc (310°), One Files (285°) and Reverso Silver (318°) instruments (P > 0.05), which were significantly lower than Reciproc Blue (492°), One Files Blue (456°) and WaveOne Gold (492°; P < 0.05). Maximum bending load demonstrated that Reciproc Blue (201.3 gf) was significantly more flexible that the other instruments (P < 0.05). CONCLUSION: Although there were similarities in metal composition and percentage of unprepared canal surface, the instruments had differences in the overall geometric design, phase transformation temperatures and in the four mechanical resistance parameters (time to fracture, maximum torque, angle of rotation and maximum bending load).


Assuntos
Instrumentos Odontológicos , Preparo de Canal Radicular , Desenho de Equipamento , Teste de Materiais , Estresse Mecânico
2.
Int Endod J ; 54(5): 780-792, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33300121

RESUMO

AIM: To compare the ProTaper Next (PTN) system with a replica-like and a counterfeit system regarding design, metallurgy, mechanical performance and shaping ability. METHODOLOGY: Replica-like (X-File) and counterfeit (PTN-CF) instruments were compared to the PTN system regarding design (microscopy), phase transformation temperatures (differential scanning calorimetry), nickel-titanium ratio (energy-dispersive X-ray spectroscopy), cyclic fatigue, torsional resistance, bending strength, and untouched canal areas in extracted mandibular molars (micro-CT). anova, post hoc Tukey's and Kruskal-Wallis tests were used according to normality assessment (Shapiro-Wilk test) with the significance level set at 5%. RESULTS: Overall similarities in design and nickel-titanium (Ni/Ti) ratio were observed amongst instruments with the X-File having a smoother surface finish. PTN and PTN-CF had mixed austenite plus R-phase (R-phase start approximately at 45 ºC and near 30 ºC, respectively), whilst X-File instruments were austenitic (R-phase started at approximately at 17 ºC) at room temperature (20 ºC). PTN-CF had the greatest inconsistency in the phase transformation temperatures. Time to fracture of PTN-CF X2 and X3 was significantly shorter than PTN and X-File instruments (P < 0.05), whilst no difference was noted in maximum torque to fracture amongst the tested systems (P > 0.05). X-Files and PTN-CF had a stress-induced phase change during bending load. Mean unprepared surface areas of root canals were 25.8% (PTN), 31.1% (X-File) and 32.5% (PTN-CF) with no significant difference amongst groups (P > 0.05). CONCLUSION: Similarities amongst the systems were noted in the Ni/Ti ratio and maximum torque to fracture, whilst differences were observed in the design, phase transformation temperatures and mechanical behaviour. The ProTaper Next counterfeit instruments could be considered as the less secure system considering its low-cyclic fatigue resistance. Apart from these differences, the unprepared canal surface areas, obtained with the tested systems, were similar.


Assuntos
Ligas Dentárias , Preparo de Canal Radicular , Desenho de Equipamento , Teste de Materiais , Metalurgia , Estresse Mecânico , Titânio , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...